For today’s show, we return to discussing the exciting new Cellanome platform. Joining Theral are Pier Federico Gherardini, VP of Computational Biology at Cellanome, and Matthew Spitzer, Associate Professor at University of California, San Francisco, whose lab is using Cellanome’s CellCage technology to study immune cells in dynamic, interactive contexts.
0:00 From static snapshots to observing cell function in real time
4:45 Pairing phenotype with function like we never could before
7:30 Can see cell-cell interaction
19:40 Early applications
Rather than relying on static single-cell snapshots, the Cellanome platform enables longitudinal observation of live cells—tracking division, interaction, and function over time—before pairing those behaviors with transcriptomic and molecular readouts. As Gherardini explains, “This creates essentially a new data type where you observe cells over time… and then you can pair all of that functional information with the molecular readouts that you get from sequencing.”
For Spitzer, that shift fundamentally changes what can be known. Traditional approaches often force scientists to infer function indirectly, correlating phenotype measured in one experiment with behavior measured in another. With CellCage, his lab can finally measure both in the same individual cell.
“Now we have measured the function of the cell and the phenotype for the same exact individual cell,” Spitzer says, “and this allows us to really understand how those core characteristics are linked in a much more detailed way.”
For Spitzer, a major advance comes from observing cell–cell interactions as they unfold. Where previous methods could show proximity in a tissue section, they could not reveal outcomes. Using Cellanome, Spitzer’s team can now watch whether a T cell activated by a dendritic cell actually proliferates, produces effector molecules, or kills a tumor cell—and then trace those outcomes back to specific molecular programs. This has already revealed surprising heterogeneity within supposedly uniform cell populations, identifying rare but highly potent immune cells that would have been invisible in bulk assays.
Looking ahead, both guests see immediate applications in cell therapy development, target discovery, and functional CRISPR screening—areas where measuring what cells actually do matters more than what they merely express. We close with a sense that cell biology is entering a new phase—one where function, interaction, and time are no longer inferred, but directly observed, measured, and modeled.










